Digital History: The Story So Far
As the field of Digital History continues to grow, so too does the number of tools, software, and coding packages built to support and advance digital history in practice. The range of this is at times staggering: from applications suitable for the most novice of digital historians, to coding guides and tools for those working to more nuanced and specific end-goals, researchers have an ability to engage with their materials in digital, quantitative ways on a never before seen level. Often we focus primarily on the new findings that come of out this new way of approaching research - but what about the ways we get to those findings?
Regardless of the type of digital analysis being performed or even the software being used, the process is normally the same: input some data, click some buttons or run some code (perhaps a couple of times over to edit the code and adjust the outcomes), and get your end result.
You've got an outcome - but do you know how you've got from a to b? It's likely that variables have been written over several times along the way, and the data has changed from one type to another, been filtered or added to, and decision after decision has been made without necessarily knowing it. Each little adjustment or re-run of the code has contributed to the research process and is critical to the end output or findings.
But how do we keep track?
Hello kiara.
Introducing kiara, a new data orchestration tool.
This new tool incorporates a number of different digital research approaches, but most importantly documents and encourages users to critically reflect on the process and use of DH tools. In doing so, the software opens up the black box of digital research, moving away from button-clicking software and making digital research more transparent and open to commentary, replicability, and criticism. It not only makes the research process itself more open, allowing users to visualise and examine the individual steps from start to finish, but also allows them to track changes to the data itself, something that is either imperceptible or, perhaps more importantly, forgotten about in traditional digital history methods and tools. kiara therefore acts as a 'wrapper' to this digital reserach process, tracking and documenting the steps and changes to the data, producing a veritable map of the journey that can be reflected upon and shared.
This tutorial will walk you through installation of kiara in Jupyter Notebooks, and some basic but essential functions that can be built on in further notebooks. At the end, it will showcase the data lineage, having tracked the research process and changes to the data from start to finish.
This tutorial requires you to know python and SQL.
Installation
Before running this notebook, you need to install Kiara and its dependencies in a virtual environment (such as Conda) by running the following command in your terminal:
pip install git+https://github.com/DHARPA-Project/kiara_plugin.dh_tagung_2023
Running kiara
In order to use kiara, we need to create a KiaraAPI
instance. An API allows us to control and interact with kiara and its functions. In kiara this also allows us to get more information about what can be done (and what is happening) to our data as we go. For more on what can be done with the API, see the kiara API documentation here.
from kiara.api import KiaraAPI
kiara = KiaraAPI.instance()
Now we have an API in place, we can get more information about what we can do in kiara. Let's start by asking kiara to list all the operations that are included with the plugins we just installed.
kiara.list_operation_ids()
['assemble.network_data.from.files', 'assemble.network_data.from.tables', 'compute.modularity_group', 'create.betweenness_rank_list', 'create.closeness_rank_list', 'create.cut_point_list', 'create.database.from.file', 'create.database.from.file_bundle', 'create.database.from.table', 'create.degree_rank_list', 'create.eigenvector_rank_list', 'create.network_data.from.file', 'create.table.from.file', 'create.table.from.file_bundle', 'date.check_range', 'date.extract_from_string', 'download.file', 'download.file_bundle', 'export.file.as.file', 'export.network_data.as.csv_files', 'export.network_data.as.graphml_file', 'export.network_data.as.sql_dump', 'export.network_data.as.sqlite_db', 'export.table.as.csv_file', 'extract.date_array.from.table', 'file_bundle.pick.file', 'file_bundle.pick.sub_folder', 'import.database.from.local_file_path', 'import.file', 'import.file_bundle', 'import.local.file', 'import.local.file_bundle', 'import.network_data.from.local_file_paths', 'import.table.from.local_file_path', 'import.table.from.local_folder_path', 'list.contains', 'logic.and', 'logic.nand', 'logic.nor', 'logic.not', 'logic.or', 'logic.xor', 'network_data.extract_largest_component', 'onboard.gml_file', 'onboard.zenodo_record', 'parse.date_array', 'query.database', 'query.table', 'string_filter.tokens', 'table.pick.column', 'table_filter.drop_columns', 'table_filter.select_columns', 'table_filter.select_rows']
Downloading Files
Great, now we know the different kind of operations we can use with kiara. Let's start by introducing some files to our notebook, using the download.file
function.
First we want to find out what this operation does, and just as importantly, what inputs it needs to work.
kiara.retrieve_operation_info('download.file')
Author(s) Markus Binsteiner markus@frkl.io Context Tags onboarding Labels package: kiara_plugin.onboarding References source_repo: https://github.com/DHARPA-Project/kiara_plugin.onboardingdocumentation: https://DHARPA-Project.github.io/kiara_plugin.onboarding/Operation details Documentation Download a single file from a remote location. The result of this operation is a single value of type 'file' (basically an array of raw bytes), which can then be used in other modules to create more meaningful data structures. Inputs field name type description Required Default ────────────────────────────────────────────────────────────────────────────────────────────────── url string The url of the file to download. yes -- no default -- file_name string The file name to use for the downloaded no -- no default -- file. Outputs field name type description ────────────────────────────────────────────────────────────────────────────────────────────────── file file The downloaded file. download_metadata dict Metadata about the download.
So from this, we know that download.file
will download a single file from a remote location for us to use in kiara.
We need to give the function a url and, if we want, a file name. These are the inputs.
In return, we will get the file and metadata about the file as our outputs.
Let's give this a go using some kiara sample data.
First we define our inputs, then use kiara.run_job
with our chosen operation, download.file
, and save this as our outputs.
inputs = {
"url": "https://raw.githubusercontent.com/DHARPA-Project/kiara.examples/main/examples/data/network_analysis/journals/JournalNodes1902.csv",
"file_name": "JournalNodes1902.csv"
}
outputs = kiara.run_job('download.file', inputs=inputs)
Let's print out our outputs and see what that looks like.
outputs
╭──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮ │ │ │ field value │ │ ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── │ │ download_metadata │ │ dict data {│ │"response_headers": [│ │ {│ │"connection": "keep-alive",│ │"content-length": "7436",│ │"cache-control": "max-age=300",│ │"content-security-policy": "default-src 'none'; style-src 'unsafe-inline'; sandbox",│ │"content-type": "text/plain; charset=utf-8",│ │"etag": "W/"641ae85d69e5836d27ea8906aba0a33b48b0f3ed0ed4c40d21a07fccebdd238d"",│ │"strict-transport-security": "max-age=31536000",│ │"x-content-type-options": "nosniff",│ │"x-frame-options": "deny",│ │"x-xss-protection": "1; mode=block",│ │"x-github-request-id": "5428:E056:DE6D8:E58DB:6527E802",│ │"content-encoding": "gzip",│ │"accept-ranges": "bytes",│ │"date": "Thu, 12 Oct 2023 12:35:15 GMT",│ │"via": "1.1 varnish",│ │"x-served-by": "cache-fra-eddf8230131-FRA",│ │"x-cache": "MISS",│ │"x-cache-hits": "0",│ │"x-timer": "S1697114115.825867,VS0,VE179",│ │"vary": "Authorization,Accept-Encoding,Origin",│ │"access-control-allow-origin": "*",│ │"cross-origin-resource-policy": "cross-origin",│ │"x-fastly-request-id": "aa72f9a416f0a1fb259a8f6a986059d83a8119ff",│ │"expires": "Thu, 12 Oct 2023 12:40:15 GMT",│ │"source-age": "0"│ │ }│ │ ],│ │"request_time": "2023-10-12T12:35:14.923561+00:00"│ │}│ │ dict schema {│ │"title": "dict",│ │"type": "object"│ │}│ ││ │ file Id,Label,JournalType,City,CountryNetworkTime,PresentDayCountry,Latitude,Longitude,Language │ │ 75,Psychiatrische en neurologische bladen,specialized: psychiatry and │ │ neurology,Amsterdam,Netherlands,Netherlands,52.366667,4.9,Dutch │ │ 36,The American Journal of Insanity,specialized: psychiatry and neurology,Baltimore,United States,United │ │ States,39.289444,-76.615278,English │ │ 208,The American Journal of Psychology,specialized: psychology,Baltimore,United States,United │ │ States,39.289444,-76.615278,English │ │ 295,Die Krankenpflege,specialized: therapy,Berlin,German Empire,Germany,52.52,13.405,German │ │ 296,Die deutsche Klinik am Eingange des zwanzigsten Jahrhunderts,general medicine,Berlin,German │ │ Empire,Germany,52.52,13.405,German │ │ 300,Therapeutische Monatshefte,specialized: therapy,Berlin,German Empire,Germany,52.52,13.405,German │ │ 1,Allgemeine Zeitschrift für Psychiatrie,specialized: psychiatry and neurology,Berlin,German │ │ Empire,Germany,52.52,13.405,German │ │ 7,Archiv für Psychiatrie und Nervenkrankheiten,specialized: psychiatry and neurology,Berlin,German │ │ Empire,Germany,52.52,13.405,German │ │ 10,Berliner klinische Wochenschrift,general medicine,Berlin,German Empire,Germany,52.52,13.405,German │ │ 13,Charité Annalen,general medicine,Berlin,German Empire,Germany,52.52,13.405,German │ │ 21,Monatsschrift für Psychiatrie und Neurologie,specialized: psychiatry and neurology,Berlin,German │ │ Empire,Germany,52.52,13.405,German │ │ 29,Virchows Archiv,"specialized: anatomy, physiology and pathology",Berlin,German │ │ Empire,Germany,52.52,13.405,German │ │ 31,Zeitschrift für pädagogische Psychologie und Pathologie,specialized: psychology and pedagogy,Berlin,German │ │ Empire,Germany,52.52,13.405,German │ │ 42,Vierteljahrsschrift für gerichtliche Medizin und öffentliches Sanitätswesen,"specialized: anthropology, │ │ criminology and forensics",Berlin,German Empire,Germany,52.52,13.405,German │ │ 47,Centralblatt für Nervenheilkunde und Psychiatrie,specialized: psychiatry and neurology,Berlin,German │ │ Empire,Germany,52.52,13.405,German │ │ 50,Russische medicinische Rundschau,general medicine,Berlin,German Empire,Germany,52.52,13.405,German │ │ 76,Deutsche Aerzte-Zeitung,general medicine,Berlin,German Empire,Germany,52.52,13.405,German │ │ 87,Monatsschrift für Geburtshülfe und Gynäkologie,specialized: gynecology,Berlin,German │ │ Empire,Germany,52.52,13.405,German │ │ 108,Archiv für klinische Chirurgie,specialized: surgery,Berlin,German Empire,Germany,52.52,13.405,German │ │ 113,Zeitschrift für klinische Medicin,general medicine,Berlin,German Empire,Germany,52.52,13.405,German │ │ 159,Deutsche militärärztliche Zeitschrift,specialized: military medicine,Berlin,German │ │ Empire,Germany,52.52,13.405,German │ │ 162,Jahresbericht über die Leistungen und Fortschritte auf dem Gebiete der Neurologie und │ │ Psychiatrie,specialized: psychiatry and neurology,Berlin,German Empire,Germany,52.52,13.405,German │ │ 192,Ärztliche Sachverständigen-Zeitung,general medicine,Berlin,German Empire,Germany,52.52,13.405,German │ │ 198,Zeitschrift für die Behandlung Schwachsinniger und Epileptischer,specialized: psychiatry and │ │ neurology,Berlin,German Empire,Germany,52.52,13.405,German │ │ 258,Der Pfarrbote,news media,Berlin,German Empire,Germany,52.52,13.405,German │ │ 71,Correspondenz-Blatt für Schweizer Aerzte,general │ │ medicine,Bern,Switzerland,Switzerland,46.948056,7.4475,German │ │ 6,Archiv für mikroskopische Anatomie,"specialized: anatomy, physiology and pathology",Bonn,German │ │ Empire,Germany,50.733333,7.1,German │ │ 203,The Journal of Abnormal Psychology,specialized: psychology,Boston,United States,United │ │ States,42.358056,-71.063611,English │ │ 273,"Correspondenz-Blatt der Deutschen Gesellschaft für Anthropologie, Ethnologie und │ │ Urgeschichte","specialized: anthropology, criminology and forensics",Braunschweig,German │ │ Empire,Germany,52.266667,10.516667,German │ │ 303,Policlinique de Bruxelles,general medicine,Brussels,Belgium,Belgium,50.85,4.35,French │ │ 306,Annales de la Société Belge de Neurologie,specialized: psychiatry and │ │ neurology,Brussels,Belgium,Belgium,50.85,4.35,French │ │ 19,Journal de neurologie,specialized: psychiatry and neurology,Brussels,Belgium,Belgium,50.85,4.35,French │ │ 25,"Revue internationale d'électrothérapie, de physiologie, de médecine, de chirurgie, d'obstétrique, de │ │ thérapeutique, de chimie et de pharmacie",general medicine,Brussels,Belgium,Belgium,50.85,4.35,French │ │ 35,Bulletin de la Société de Médecine Mentale de Belgique,specialized: psychiatry and │ │ neurology,Brussels,Belgium,Belgium,50.85,4.35,French │ │ ... │ ││ │ ... │ │ │ ╰──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
Great! We've successfully downloaded the file, and we can see there's lots of information here.
At the moment, we're most interested in the file output. This contains the actual contents of the file that we have just downloaded.
Let's separate this out and store it in a separate variable for us to use.
downloaded_file = outputs['file']
New Formats: Creating and Converting
What next? We could transform the downloaded file contents into a different format.
Let's use the operation list earlier, and look for something that allows us to create something out of our new file.
kiara.list_operation_ids('create')
['create.betweenness_rank_list', 'create.closeness_rank_list', 'create.cut_point_list', 'create.database.from.file', 'create.database.from.file_bundle', 'create.database.from.table', 'create.degree_rank_list', 'create.eigenvector_rank_list', 'create.network_data.from.file', 'create.table.from.file', 'create.table.from.file_bundle']
Our file was orginally in a CSV format, so let's make a table using create.table.from.file
.
Just like when we used download.file
, we can double check what this does, and what inputs and outputs this involves.
This time, we're also going to use a variable to store the operation in - this is especially handy if the operation has a long name, or if you want to use the same operation more than once without retyping it.
op_id = 'create.table.from.file'
kiara.retrieve_operation_info(op_id)
Author(s) Markus Binsteiner markus@frkl.io Context Tags tabular Labels package: kiara_plugin.tabular References source_repo: https://github.com/DHARPA-Project/kiara_plugin.tabulardocumentation: https://DHARPA-Project.github.io/kiara_plugin.tabular/Operation details Documentation Create a table from a file, trying to auto-determine the format of said file. Inputs field name type description Required Default ────────────────────────────────────────────────────────────────────────────────────────────────── file file The source value (of type 'file'). yes -- no default -- first_row_is_header boolean Whether the first row of the file no -- no default -- is a header row. If not provided, kiara will try to auto-determine. Outputs field name type description ────────────────────────────────────────────────────────────────────────────────────────────────── table table The result value (of type 'table').
Great, we have all the information we need now.
Let's go again.
First we define our inputs, that is the downloaded file we saved earlier as well as telling kiara that the first row should be read as a header.
Then use kiara.run_job
with our chosen operation, this time stored as op_id
.
Once this is saved as our outputs, we can print it out.
inputs = {
"file": downloaded_file,
"first_row_is_header": True
}
outputs = kiara.run_job(op_id, inputs=inputs)
outputs
╭──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮ │ │ │ field value │ │ ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── │ │ table │ │ Id Label JournalType City CountryNetworkT PresentDayCoun Latitude Longitude Language │ │ ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── │ │ 75 Psychiatrische specialized: p Amsterdam Netherlands Netherlands 52.366667 4.9 Dutch │ │ 36 The American J specialized: p Baltimore United States United States 39.289444 -76.615278 English │ │ 208 The American J specialized: p Baltimore United States United States 39.289444 -76.615278 English │ │ 295 Die Krankenpfl specialized: t Berlin German Empire Germany 52.52 13.405 German │ │ 296 Die deutsche K general medici Berlin German Empire Germany 52.52 13.405 German │ │ 300 Therapeutische specialized: t Berlin German Empire Germany 52.52 13.405 German │ │ 1 Allgemeine Zei specialized: p Berlin German Empire Germany 52.52 13.405 German │ │ 7 Archiv für Psy specialized: p Berlin German Empire Germany 52.52 13.405 German │ │ 10 Berliner klini general medici Berlin German Empire Germany 52.52 13.405 German │ │ 13 Charité Annale general medici Berlin German Empire Germany 52.52 13.405 German │ │ 21 Monatsschrift specialized: p Berlin German Empire Germany 52.52 13.405 German │ │ 29 Virchows Archi specialized: a Berlin German Empire Germany 52.52 13.405 German │ │ 31 Zeitschrift fü specialized: p Berlin German Empire Germany 52.52 13.405 German │ │ 42 Vierteljahrssc specialized: a Berlin German Empire Germany 52.52 13.405 German │ │ 47 Centralblatt f specialized: p Berlin German Empire Germany 52.52 13.405 German │ │ 50 Russische medi general medici Berlin German Empire Germany 52.52 13.405 German │ │ ... ... ... ... ... ... ... ... ... │ │ ... ... ... ... ... ... ... ... ... │ │ 277 L'arte medica general medici Turin Italy Italy 45.079167 7.676111 Italian │ │ 288 Allgemeine öst specialized: a Vienna Austro-Hungaria Austria 48.2 16.366667 German │ │ 18 Jahrbücher für specialized: p Vienna Austro-Hungaria Austria 48.2 16.366667 German │ │ 30 Wiener klinisc general medici Vienna Austro-Hungaria Austria 48.2 16.366667 German │ │ 44 Wiener klinisc general medici Vienna Austro-Hungaria Austria 48.2 16.366667 German │ │ 45 Wiener medizin general medici Vienna Austro-Hungaria Austria 48.2 16.366667 German │ │ 72 Wiener medizin general medici Vienna Austro-Hungaria Austria 48.2 16.366667 German │ │ 81 Monatsschrift general medici Vienna Austro-Hungaria Austria 48.2 16.366667 German │ │ 93 Klinisch-thera general medici Vienna Austro-Hungaria Austria 48.2 16.366667 German │ │ 151 Medicinisch-ch specialized: s Vienna Austro-Hungaria Austria 48.2 16.366667 German │ │ 199 Der Militärazt specialized: m Vienna Austro-Hungaria Austria 48.2 16.366667 German │ │ 261 Медицинская бе general medici Voronezh Russian Empire Russia 51.671667 39.210556 Russian │ │ 77 Medycyna general medici Warsaw Russian Empire Poland 52.233333 21.016667 Polish │ │ 150 Kronika Lekars general medici Warsaw Russian Empire Poland 52.233333 21.016667 Polish │ │ 86 Grenzfragen de specialized: p Wiesbaden German Empire Germany 50.0825 8.24 German │ │ 206 Ergebnisse der specialized: a Wiesbaden German Empire Germany 50.0825 8.24 German │ ││ │ │ ╰──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
This has done exactly what we wanted, and shown the contents from the downloaded file as a table. But we are also interested in some general (mostly internal) information and metadata, this time for the new table we have just created, rather than the original file itself.
Let's have a look.
outputs_table = outputs['table']
outputs_table
value_id 36df833f-0dbe-4683-b912-42c73df877ac kiara_id 441206f8-e5b4-43d1-b198-d4741dc64e04 ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────── data_type_info data_type_name table data_type_config {} characteristics { "is_scalar": false, "is_json_serializable": false } data_type_class python_class_name TableType python_module_name kiara_plugin.tabular.data_types.table full_name kiara_plugin.tabular.data_types.table.TableType destiny_backlinks {} enviroments None property_links { "metadata.python_class": "2e52a3a1-de3d-4202-aea1-90a0cec145e0", "metadata.table": "29bc8c46-be1b-4a3a-8f52-a58c1f194cc2" } value_hash zdpuAn89Et1ENzfoASJRYcWEceyfRiPg664mN4nnHLFnjRLyg value_schema type table type_config {} default not_set optional False is_constant False doc The result value (of type 'table'). value_size 42.79 KB value_status -- set --
Querying our Data
So now we have downloaded our file and converted it into a table, we want to actually explore it.
To do this, we can query the table using SQL and some functions already included in kiara.
Let's take another look at that operation list, this time looking for functions that let us 'query'.
kiara.list_operation_ids('query')
['query.database', 'query.table']
Well, we already know our file has been converted into a table, so let's have a look at query.table
.
kiara.retrieve_operation_info('query.table')
Author(s) Markus Binsteiner markus@frkl.io Context Tags tabular Labels package: kiara_plugin.tabular References source_repo: https://github.com/DHARPA-Project/kiara_plugin.tabulardocumentation: https://DHARPA-Project.github.io/kiara_plugin.tabular/Operation details Documentation Execute a sql query against an (Arrow) table. The default relation name for the sql query is 'data', but can be modified by the 'relation_name' config option/input. If the 'query' module config option is not set, users can provide their own query, otherwise the pre-set one will be used. Inputs field name type description Required Default ────────────────────────────────────────────────────────────────────────────────────────────────── table table The table to query yes -- no default -- query string The query, use the value of the yes -- no default -- 'relation_name' input as table, e.g. 'select * from data'. relation_name string The name the table is referred to in the no data sql query. Outputs field name type description ────────────────────────────────────────────────────────────────────────────────────────────────── query_result table The query result.
So from this information, we only need to provide the table itself, and our query.
Let's work out how many of these journals were published in Berlin.
inputs = {
"table": outputs_table,
"query": "SELECT * from data where City like 'Berlin'"
}
outputs = kiara.run_job('query.table', inputs=inputs)
outputs
╭──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮ │ │ │ field value │ │ ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── │ │ query_result │ │ Id Label JournalType City CountryNetwor PresentDayCoun Latitude Longitude Language │ │ ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────── │ │ 295 Die Krankenpfl specialized: t Berlin German Empire Germany 52.52 13.405 German │ │ 296 Die deutsche K general medici Berlin German Empire Germany 52.52 13.405 German │ │ 300 Therapeutische specialized: t Berlin German Empire Germany 52.52 13.405 German │ │ 1 Allgemeine Zei specialized: p Berlin German Empire Germany 52.52 13.405 German │ │ 7 Archiv für Psy specialized: p Berlin German Empire Germany 52.52 13.405 German │ │ 10 Berliner klini general medici Berlin German Empire Germany 52.52 13.405 German │ │ 13 Charité Annale general medici Berlin German Empire Germany 52.52 13.405 German │ │ 21 Monatsschrift specialized: p Berlin German Empire Germany 52.52 13.405 German │ │ 29 Virchows Archi specialized: a Berlin German Empire Germany 52.52 13.405 German │ │ 31 Zeitschrift fü specialized: p Berlin German Empire Germany 52.52 13.405 German │ │ 42 Vierteljahrssc specialized: a Berlin German Empire Germany 52.52 13.405 German │ │ 47 Centralblatt f specialized: p Berlin German Empire Germany 52.52 13.405 German │ │ 50 Russische medi general medici Berlin German Empire Germany 52.52 13.405 German │ │ 76 Deutsche Aerzt general medici Berlin German Empire Germany 52.52 13.405 German │ │ 87 Monatsschrift specialized: g Berlin German Empire Germany 52.52 13.405 German │ │ 108 Archiv für kli specialized: s Berlin German Empire Germany 52.52 13.405 German │ │ 113 Zeitschrift fü general medici Berlin German Empire Germany 52.52 13.405 German │ │ 159 Deutsche milit specialized: m Berlin German Empire Germany 52.52 13.405 German │ │ 162 Jahresbericht specialized: p Berlin German Empire Germany 52.52 13.405 German │ │ 192 Ärztliche Sach general medici Berlin German Empire Germany 52.52 13.405 German │ │ 198 Zeitschrift fü specialized: p Berlin German Empire Germany 52.52 13.405 German │ │ 258 Der Pfarrbote news media Berlin German Empire Germany 52.52 13.405 German │ ││ │ │ ╰──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
The function has returned the table with just the results we were looking for from the SQL query.
Let's narrow this further, and find all the journals that are just about general medicine and published in Berlin.
We can re-use the query.table
function and the table we've just made, stored in outputs['query_result']
inputs = {
"table" : outputs['query_result'],
"query" : "SELECT * from data where JournalType like 'general medicine'"
}
outputs = kiara.run_job('query.table', inputs=inputs)
outputs
╭──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮ │ │ │ field value │ │ ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── │ │ query_result │ │ Id Label JournalType City CountryNetwork PresentDayCou Latitude Longitude Language │ │ ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────── │ │ 296 Die deutsche K general medici Berlin German Empire Germany 52.52 13.405 German │ │ 10 Berliner klini general medici Berlin German Empire Germany 52.52 13.405 German │ │ 13 Charité Annale general medici Berlin German Empire Germany 52.52 13.405 German │ │ 50 Russische medi general medici Berlin German Empire Germany 52.52 13.405 German │ │ 76 Deutsche Aerzt general medici Berlin German Empire Germany 52.52 13.405 German │ │ 113 Zeitschrift fü general medici Berlin German Empire Germany 52.52 13.405 German │ │ 192 Ärztliche Sach general medici Berlin German Empire Germany 52.52 13.405 German │ ││ │ │ ╰──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
Recording and Tracing our Data
We've quite a few changes to this table, so let's double check the information about this new table we've created with our queries.
query_output = outputs['query_result']
query_output
value_id 008e4800-677d-4f10-a94f-a47a5822b1a0 kiara_id 441206f8-e5b4-43d1-b198-d4741dc64e04 ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────── data_type_info data_type_name table data_type_config {} characteristics { "is_scalar": false, "is_json_serializable": false } data_type_class python_class_name TableType python_module_name kiara_plugin.tabular.data_types.table full_name kiara_plugin.tabular.data_types.table.TableType destiny_backlinks {} enviroments None property_links { "metadata.python_class": "69a56eb4-98f7-4d38-bad1-51b7dc6bc300", "metadata.table": "2a73f673-0cff-45f2-bd6e-393343d6edc0" } value_hash zdpuB2LfZYHdiuR1sxy2ZkjPZ7JDnhysN48Y4RN9WNT4AvNN6 value_schema type table type_config {} default not_set optional False is_constant False doc The query result. value_size 5.22 KB value_status -- set --
Looks good!
We might have changed things around, but we can still get lots of information about all our data.
More importantly, kiara is able to trace all of these changes, tracking the inputs and outputs and giving them all different identifiers, so you know exactly what has happened to your data.
First lets have a look at our basic lineage function - this gets us the 'backstage' of what has been going on, showing the inputs for each of the functions that we have run, and where they might feed into one another. In each case, kiara has assigned the inputs a unique identifier. Check it out!
query_output.lineage
query.table ├── input: query (string)= 0a66077d-b9c7-4a0a-ba81-f60a52055d50 ├── input:relation_name (string)= 593fc9c4-3dfe-4e5b-a017-daf01c05b9ba └── input:table (table)= e324894f-c4ec-4caa-9e27-6f1463437ed3 └──query.table ├── input: query (string)= 851bd6c3-c3dd-4506-b316-81797078a515 ├── input:relation_name (string)= 32ff3626-2b42-4cfb-be67-3e8ec0f25446 └── input:table (table)= 36df833f-0dbe-4683-b912-42c73df877ac └──create.table ├── input: file (file)= 737547e8-7c61-43e7-a6ee-e037c5304f96 │ └──download.file │ ├── input: file_name (string)= 2751a86e-460e-4df8-92c3-a20f65576e3b │ └── input:url (string)= 371573ac-17a3-43ff-9073-19f249e7739e └── input:first_row_is_header (boolean) = 53185a6d-3b24-4744-b501-1f94a5639ab6
We can also visualise this, allowing us to view the different functions and their inputs and outputs as a series of steps or 'workflow' as we've been talking about.
from kiara_plugin.dh_tagung_2023.utils import augment_lineage_data
augmented_nodes = augment_lineage_data(query_output,kiara)
from observable_jupyter import embed
embed('@dharpa-project/kiara-data-lineage', cells=['displayViz', 'style'], inputs={'dataset':augmented_nodes})
Even though we are only actually asking for the data lineage using the last SQL query and the table it made, kiara shows us everything that has happened since we first downloaded the file. This helps us keep an eye on the research process and the changes we are making to the data at the same time!
What next...?
That's great, you've completed the first notebook and successfully installed kiara, downloaded files, tested out some functions, and are able to see what this does to your data.
Now you can check out the other plugin packages to explore how this helps you manage and trace your data while using digital analysis tools!